

4721/01

ADVANCED SUBSIDIARY GCE MATHEMATICS

Core Mathematics 1

THURSDAY 15 MAY 2008

Morning Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

You are not allowed to use a calculator in this paper.

This document consists of **4** printed pages.

- 1 Express each of the following in the form 4^n :
 - (i) $\frac{1}{16}$, [1]

[1]

[3]

(**ii**) 64,

- 2 (i) The curve $y = x^2$ is translated 2 units in the positive *x*-direction. Find the equation of the curve after it has been translated. [2]
 - (ii) The curve $y = x^3 4$ is reflected in the x-axis. Find the equation of the curve after it has been reflected. [1]
- 3 Express each of the following in the form $k\sqrt{2}$, where k is an integer:

(i)
$$\sqrt{200}$$
, [1]

(ii)
$$\frac{12}{\sqrt{2}}$$
, [1]

(iii)
$$5\sqrt{8} - 3\sqrt{2}$$
. [2]

- 4 Solve the equation $2x 7x^{\frac{1}{2}} + 3 = 0.$ [5]
- 5 Find the gradient of the curve $y = 8\sqrt{x} + x$ at the point whose *x*-coordinate is 9. [5]
- 6 (i) Expand and simplify (x-5)(x+2)(x+5). [3]
 - (ii) Sketch the curve y = (x 5)(x + 2)(x + 5), giving the coordinates of the points where the curve crosses the axes. [3]
- 7 Solve the inequalities

(i)
$$8 < 3x - 2 < 11$$
, [3]

(ii)
$$y^2 + 2y \ge 0.$$
 [4]

- 8 The curve $y = x^3 kx^2 + x 3$ has two stationary points.
 - (i) Find $\frac{dy}{dx}$. [2]
 - (ii) Given that there is a stationary point when x = 1, find the value of k. [3]
 - (iii) Determine whether this stationary point is a minimum or maximum point. [2]
 - (iv) Find the x-coordinate of the other stationary point.

- 9 (i) Find the equation of the circle with radius 10 and centre (2, 1), giving your answer in the form $x^2 + y^2 + ax + by + c = 0.$ [3]
 - (ii) The circle passes through the point (5, *k*) where k > 0. Find the value of *k* in the form $p + \sqrt{q}$. [3]
 - (iii) Determine, showing all working, whether the point (-3, 9) lies inside or outside the circle. [3]
 - (iv) Find an equation of the tangent to the circle at the point (8, 9). [5]
- 10 (i) Express $2x^2 6x + 11$ in the form $p(x+q)^2 + r$. [4]
 - (ii) State the coordinates of the vertex of the curve $y = 2x^2 6x + 11$. [2]
 - (iii) Calculate the discriminant of $2x^2 6x + 11$. [2]
 - (iv) State the number of real roots of the equation $2x^2 6x + 11 = 0.$ [1]
 - (v) Find the coordinates of the points of intersection of the curve $y = 2x^2 6x + 11$ and the line 7x + y = 14. [5]

1	(i)	<i>n</i> = -2	B1
	(ii)	<i>n</i> = 3	B1 1
	(iii)		M1 $\sqrt{4^3}$ or $64^{\frac{1}{2}}$ or $\left(4^{\frac{1}{2}}\right)^3$ or $\left(4^3\right)^{\frac{1}{2}}$ or
			$4 \times \sqrt{4}$ with brackets correct if used
		$n = \frac{3}{2}$	A1
			2
2	(i)		$\mathbf{M1} \qquad y = (x \pm 2)^2$
		$y = (x-2)^2$	A1 2
	(ii)	$y = -(x^3 - 4)$	B1 oe
			1
3	(i)	$\sqrt{2 \times 100} = 10\sqrt{2}$	B1
		$12 12\sqrt{2}$	
	(ii)	$\frac{1}{\sqrt{2}} = \frac{1}{2} = 6\sqrt{2}$	B1
			<u> </u>
	(iii)		M1 Attempt to express $5\sqrt{8}$ in terms of $\sqrt{2}$
		$10\sqrt{2} - 3\sqrt{2} = \sqrt{2}$	$\frac{\mathbf{A}}{2}$
4		$v = x^{\frac{1}{2}}$	
		$2y^2 - 7y + 3 = 0$	M1* Use a substitution to obtain a quadratic or
		(2y-1)(y-3) = 0	factorise into 2 brackets each containing x M1dep Correct method to solve a quadratic
		$y = \frac{1}{2}, y = 3$	A1
		2	M1 Attempt to square to obtain x
		$x = \frac{1}{4}, x = 9$	A1
			SR If first M1 not gained and 3 and ½ given as final answers, award B1 5

4721 Core Mathematics 1

5		M1	Attempt to differentiate
		A1	$kx^{-\frac{1}{2}}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{-\frac{1}{2}} + 1$	A1	
	$=4\left(\frac{1}{\sqrt{9}}\right)+1$	M1	Correct substitution of $x = 9$ into their
$\frac{\mathrm{d}y}{\mathrm{d}x}$	$=\frac{7}{3}$	A1	$\frac{7}{3}$ only
		5	
6 (i)	(x-5)(x+2)(x+5)	B1	$x^2 - 3x - 10$ or $x^2 + 7x + 10$ or $x^2 - 25$
	$=(x^2 - 3x - 10)(x + 5)$	M1	Attempt to multiply a quadratic by a linear factor
	$= x^3 + 2x^2 - 25x - 50$	A1 3	
	-5 -2 -50 -50		
		B1 B1√ B1	+ve cubic with 3 roots (not 3 line segments) (0, -50) labelled or indicated on y-axis (-5, 0), (-2, 0), (5, 0) labelled or indicated
		3	on x-axis and no other x- intercepts
7 (i)	8 < 3x - 2 < 11	M1	2 equations or inequalities both dealing with all 3 terms resulting in $a \le kx \le b$
	10 < 3x < 13	A1	10 and 13 seen
	$\frac{10}{3} < x < \frac{13}{3}$	A1	
		3	
(ii)	$x(x+2) \ge 0$	M1	Correct method to solve a quadratic
		A1 M1	0, -2 Correct method to solve inequality
	$x \ge 0, x \le -2$	A1	Correct memor to solve mequanty
		4	

8	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2kx + 1$	B1	One term correct
		u.	B1	Fully correct
			2	
	(ii)	$3x^2 - 2kx + 1 = 0$ when $x = 1$	M1	their $\frac{dy}{dx} = 0$ soi
		3 - 2k + 1 = 0	M1	$x = 1$ substituted into their $\frac{dy}{dx} = 0$
		<i>k</i> = 2	A1√ 3	
	(iii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 4$	M1	Substitutes $x = 1$ into their $\frac{d^2 y}{dx^2}$ and looks at sign
		When $x = 1$, $\frac{d^2 y}{dr^2} > 0$: min pt	A1	States minimum CWO
		u.	2	
	(iv)	$3x^2 - 4x + 1 = 0$	M1	their $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
		(3x-1)(x-1) = 0	M1	correct method to solve 3-term quadratic
		$x = \frac{1}{3}, x = 1$		
		$x = \frac{1}{2}$	A1	WWW at any stage
		3	3	

9	(i)		B1	$(x-2)^2$ and $(y-1)^2$ seen
		$(x-2)^2 + (y-1)^2 = 100$	B 1	$(x\pm 2)^2 + (y\pm 1)^2 = 100$
		$x^2 + y^2 - 4x - 2y - 95 = 0$	B1	correct form
			3	
	(ii)	$(5-2)^2 + (k-1)^2 = 100$	M1	x = 5 substituted into their equation
		$(k-1)^2 = 91$ or $k^2 - 2k - 90 = 0$	A1	correct, simplified quadratic in k (or y)
		_		obtained
		$k = 1 + \sqrt{91}$	A1	cao
	(iii)	distance from $(-3, 9)$ to $(2, 1)$	<u> </u>	
	()	$=\sqrt{(2-3)^2+(1-9)^2}$	M1	Uses $(x_2 - x_1)^2 + (y_2 - y_1)^2$
		$=\sqrt{25+64}$	A1	
		$=\sqrt{89}$		
		$\sqrt{89} < 10$ so point is inside	B 1	compares their distance with 10 and makes consistent conclusion
			3	
	(iv)	gradient of radius $=\frac{9-1}{8-2}$	3 M1	uses $\frac{y_2 - y_1}{x_2 - x_1}$
	(iv)	gradient of radius $=\frac{9-1}{8-2}$ $=\frac{4}{3}$	3 M1 A1	uses $\frac{y_2 - y_1}{x_2 - x_1}$ oe
	(iv)	gradient of radius $=\frac{9-1}{8-2}$ $=\frac{4}{3}$ gradient of tangent $=-\frac{3}{4}$	3 M1 A1 B1√	uses $\frac{y_2 - y_1}{x_2 - x_1}$ oe oe
	(iv)	gradient of radius $=$ $\frac{9-1}{8-2}$ $=$ $\frac{4}{3}$ gradient of tangent $=$ $-\frac{3}{4}$ $y-9=-\frac{3}{4}(x-8)$	3 M1 A1 B1√ M1	uses $\frac{y_2 - y_1}{x_2 - x_1}$ oe oe correct equation of straight line through (8, 9),
	(iv)	gradient of radius $=$ $\frac{9-1}{8-2}$ $=$ $\frac{4}{3}$ gradient of tangent $=$ $-\frac{3}{4}$ $y-9=-\frac{3}{4}(x-8)$	3 M1 A1 B1√ M1	uses $\frac{y_2 - y_1}{x_2 - x_1}$ oe oe correct equation of straight line through (8, 9), any non-zero gradient
	(iv)	gradient of radius $=$ $\frac{9-1}{8-2}$ $=$ $\frac{4}{3}$ gradient of tangent $=$ $-\frac{3}{4}$ $y-9=-\frac{3}{4}(x-8)$ $y-9=-\frac{3}{4}x+6$	3 M1 A1 B1√ M1	uses $\frac{y_2 - y_1}{x_2 - x_1}$ oe oe correct equation of straight line through (8, 9), any non-zero gradient
	(iv)	gradient of radius $=$ $\frac{9-1}{8-2}$ $=$ $\frac{4}{3}$ gradient of tangent $=$ $-\frac{3}{4}$ $y-9=-\frac{3}{4}(x-8)$ $y-9=-\frac{3}{4}x+6$ $y=-\frac{3}{4}x+15$	3 M1 A1 B1√ M1	uses $\frac{y_2 - y_1}{x_2 - x_1}$ oe oe correct equation of straight line through (8, 9), any non-zero gradient oe 3 term equation
	(iv)	gradient of radius $=$ $\frac{9-1}{8-2}$ $=$ $\frac{4}{3}$ gradient of tangent $=$ $-\frac{3}{4}$ $y-9=-\frac{3}{4}(x-8)$ $y-9=-\frac{3}{4}x+6$ $y=-\frac{3}{4}x+15$	3 M1 A1 B1√ M1 A1 5	uses $\frac{y_2 - y_1}{x_2 - x_1}$ oe oe correct equation of straight line through (8, 9), any non-zero gradient oe 3 term equation

10 (i)	$2(x^2 - 3x) + 11$	B1	<i>p</i> = 2
	$=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]+11$	B1	$q = -\frac{3}{2}$
	$=2\left(x-\frac{3}{2}\right)^{2}+\frac{13}{2}$	M1	$r = 11 - 2q^2$ or $\frac{11}{2} - q^2$
		A1	$r = \frac{13}{2}$
		4	
(ii)	$\left(\frac{3}{2},\frac{13}{2}\right)$	B 1√	
		B1√ _2	
(iii)	36-4×2×11	M1	uses $b^2 - 4ac$
	= -52	A1 2	
(iv)	0 real roots	B1 1	cao
(v)	$2x^2 - 6x + 11 = 14 - 7x$	M1*	substitute for x/y or attempt to get an equation in 1 variable only
	$2x^2 + x - 3 = 0$	A1	obtain correct 3 term quadratic
	(2x+3)(x-1) = 0	M1de	ep correct method to solve 3 term quadratic
	$x = -\frac{3}{2}, x = 1$	A1	
	$y = \frac{49}{2}, y = 7$	A1	
		5	SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1